Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying.

نویسندگان

  • Sheng Hong
  • Yuping Wu
  • Jianfeng Zhang
  • Yugui Zheng
  • Yuan Zheng
  • Jinran Lin
چکیده

The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC-10Co-4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC-10Co-4Cr coating had better cavitation erosion-corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC-10Co-4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion-corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC-10Co-4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion-corrosion behavior of both coatings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of exper...

متن کامل

Effect of Porosity on Cavitation Erosion Resistance of HVOF Processed Tungsten Carbide Coatings

The phenomenon of cavitation is widely experienced in both pumps and under-water components of hydro power plants. The mechanism of material damage during cavitation is mainly attributed to implosion of high velocity bubbles on to the surface giving raise to local increase in stresses in excess of 1.4 GPa. In addition, material wastage due to particle induced erosion is observed in hydro plants...

متن کامل

Experimental and Numerical Study of Residual Stress in the WC-12Co HVOF Sprayed Coatings

Thermally sprayed coatings are intrinsically associated with residual stresses in the deposits. These stresses are varied in nature and magnitude, and have a pronounced effect on the mechanical behavior of the system. In the current study, WC-12Co coatings were deposited using HVOF thermal spraying. The sin2ψ method was used to evaluate the through thickness residual stress by means ...

متن کامل

Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings

This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings un...

متن کامل

Hot corrosion behavior of HVOF-sprayed CoNiCrAlYSi coatings in a sulphate environment

HVOF-sprayed CoNiCrAlYSi coatings were tested at 900 °C in a hot corrosion environment containing sodium-potassium sulphates. The HVOF spraying caused the typical splat-on-splat structure. The results after the hot corrosion testing showed that the corrosion preferentially occurred at the coating surface and the splat boundaries. The oxidation along the splat boundaries can isolate the splat fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics sonochemistry

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2016